Deconvolution estimation of mixture distributions with boundaries
نویسندگان
چکیده
منابع مشابه
Web - based Supplementary Materials for “ Deconvolution Estimation of Mixture Distributions with Boundaries ”
In this section, we discuss the numerical implementation of obtaining our proposed sieve estimators. The estimation procedure is based on the EM algorithm. In particular, we describe the special considerations regarding efficient optimization of the constrained maximization problem in each maximization step. Let’s start from the model (3.4) in Section 3.2 where the target variable X is approxim...
متن کاملStatistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...
متن کاملDeconvolution with Supersmooth Distributions
The desire to recover the unknown density when data are contaminated with errors leads to nonparametric deconvolution problems. Optimal global rates of convergence are found under the weighted Lp-loss (1 $ p $ 00). It appears that the optimal rates of convergence are extremely slow for supersmooth error distributions. To overcome the difficulty, we examine how large the noise level can be for d...
متن کاملReversed hazard rate of the mixture distributions
In this article study summery of reversed hazard rate and mixture distributons then introduce reversed hazard rate mixture and waiting times of failure also introduce mixture reversed hazard rate additive modele and multiplicative and introduce behavioure mixture of k increasing reversed hazard rate (IRFR) Increasing(IRFR).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2013
ISSN: 1935-7524
DOI: 10.1214/13-ejs774